
DependabilityCo-Design

R. A. RiemenschneiderandSteveDawson
SystemDevelopmentLaboratory

SRI International
333RavenswoodAv

MenloPark,CA 94025�
rar,dawson � @sdl.sri.com

Abstract

It is widely agreedthathigh levelsof softwaresystemdependabilitycanonly
be achieved if the systemis designedwith dependabilityin mind; securityand
otherdependabilitypropertiescannotbe “added-on”to an undependableimple-
mentation.However, mostmodernsoftwaredevelopmentmethodologiesarebased
onthenotionthatquality is achievedthroughincrementalimprovement.Theques-
tion thenarises:Are thesemodernevolutionarymethodologiesincompatiblewith
strict dependabilityrequirements?Our answeris that they neednot be,provided
dependabilityconcernsareaddressedin a semi-independent,but closelycoupled,
fashionwe call dependabilityco-design.



1 Functionality versus Dependability

A softwaresystemis dependableto theextent that it canjustifiably berelieduponto
satisfyits requirements.Many systempropertiescontributeto dependability. Security
is a representative example:clearly, a systemcontainingserioussecurityflaws – say,
one that is easily infectedby a “virus” transmittedby email – cannotbe depended
uponto behave asit should. The vastmajority of systemshave at leasta few strong
dependabilityrequirements(e.g.,thattheprivacy of passwordsmustbeprotected),and
somesystemshavea wide rangeof extremelystringentdependabilityrequirements.

Dependabiltypropertiestendto bepropertiesof thesystemasawhole,in thesense
thataseriousflaw in any partof thesystemcandestroy dependability. For thatreason,
dependabilitytypically cannotbeachievedby addingsoftwareto anundependablesys-
tem. Again,securityis a representativeexample.If a singlesystemcomponentallows
unauthorizedaccessto informationthatmustbekeptprivate,thesystemasa whole is
insecure.Pluggingtheinformationleakgenerallyrequiresmodificationof thecompo-
nent’s internals,andperhapsachangein thesystemarchitecture,ratherthanaddingan
additional“plug” component.Even worse,leakscanbe an emergentpropertyof the
system,in thesensethatno individual componentcompromisesinformationsecurity,
but thecombinationof componentsdoesso.Thus,thediscoveryof dependabilityprob-
lemscanindicatethatextensive — hence,costly— global changesin thesystemare
needed.As aresult,thereis considerableincentive to makesurethatrequiredlevelsof
dependabilityaredesigned-inasasystemis developed.

This observation appearsto conflict with recentwork on software development
methodologies,however. Modernmethodologies,from theprototyping-basedmethod-
ologiesof the1980’s[1] to today’s“eXtremeprogramming”[2] movement,de-emphasize
requirementsspecification.Ratherthantrying to specifyrequirements— anotoriously
difficult businesswith typically unsatisfactoryresults— oneproceedswith program-
ming basedon aninformal understandingof whatthesystemis supposedto do. Once
an executableprogramis available,the customercanevaluatewhetherit satisfieshis
(still unstated)requirements.If not,hecanrequestthatspecificchangesbemade,still
without having to explain exactly how thosechangescontributeto requirementssatis-
faction,muchlesswhattherequirementsare.Thecommonfeatureof thesemethodolo-
giesis theemphasison evolutionasthemeansof achieving requirementssatisfaction.

Therearetwo sortsof argumentsin favor thesemodernevolutionarymethodolo-
gies,onepositive andthe othernegative. The positive argumentis that, historically,
virtually all systemsthat are now consideredto be high-quality have evolved from
earlier versionsthat were lower quality in responseto market demands.The nega-
tive argumentis that,historically, customershave beenunableto fully explicatetheir
requirements.Almost without exception,when developmentis basedon an initial
requirementsspecificationandtheassumptionthatany systemthatsatisfiesthespeci-
fied requirementswill beacceptable,thecustomerwindsup disappointedby thefinal
product. So the moderndevelopmentmethodologiesamountto nothing more than
codificationsof whatexperiencehasshown to work best.

Doesadoptionof a developmentmethodologythat eschews a greatdealof “up-
front” formaldesigndoomadevelopertoeitherextensiveredesignandre-implementation
to achieve dependabilityafter the desiredfunctionality hasbeenachieved, or living

1



with a softwaresystemthat functionswell but cannotjustifiably bedependeduponto
besafe,secure,reliable,andsoon, in everycircumstance?We believethattheanswer
is no. The key is to efficiently achieving dependabilityis to have expertscontinually
assessthedevelopingsystem,providing adviceandcatchingerrorsassoonaspossible,
in a processwe call dependabilityco-design.

2 The Dependability Co-Design Approach

Theessenceof dependabilityco-designis to have a teamof expertsconstantlyassess
thedependabilityimplicationsof designdecisionsmadeby thesoftwaredevelopment
team,who focusprimarily on achieving thedesiredsystemfunctionality. Thedepend-
ability expertsassessmentsarebothproactiveandreactive. They provideexplicit guid-
anceto developersallowing themto avoid dependabilitypitfalls,sometimesin theform
of designconstraintsthatmustbesatisfies,but oftenin theform of primafacieattrac-
tive designalternativesthat shouldbe rejectedin the next developmentphase.They
alsoassessrecentdesigndecisionsfrom the standpointof dependability, suggesting
changeswhennecessary. Thedetailsof thecoordinationof developmentanddepend-
ability assessmentaresomewhatdevelopmentmethodology-specific— althoughthere
is acommonmethodology-independentessence— sofixing adevelopmentmethodol-
ogyshouldmake theideamoreunderstandable.

Supposethatourmethodologydictatesproceedinga top-down fashion— eitherin
asinglepass(“the waterfall model”)or multiplepasses,asin Boehm’sspiralmodel[3]
— from requirementsspecification,througharchitecturaldesign,functional design,
coding, and integration, to deployment and maintenance.1 How dependabilityco-
designis realizedin this context is shown in Figure1.

At the beginningof the developmenteffort, both functionalrequirementsandde-
pendabilityrequirementsarepoorly understood.The purposeof requirementsspec-
ification is to explicateboth setsof requirements,at an abstractlevel. The top-level
functionalrequirementsstatewhatthesystemmustdo in orderto performits mission.
Of course,this statementis not expectedto be complete.As developmentproceeds,
further requirementsemerge. However, it is expectedto be more-or-lesscorrect,and
this expectationis not terribly difficult to satisfy in many cases.(Casesin which it
cannotbesatisfiedarepoorcandidatesfor a top-down approach,evenan incremental
top-down approach,to development.) Similarly, the top-level dependabilityrequire-
mentsprovidea first approximationto whatthesystemmustnot do,givenits mission.
Functionalityanddependabilityrequirementsarethenelaboratedin parallel,eachin-
fluencingtheother.

Initially, the developersproducea systemarchitecturaldescriptionbasedon the
functionalrequirementsandany adviceon potentialarchitecturalpitfalls providedby
thedependabilityassessmentteam. For example,dependabilityadvicemight include
a recommendationto includea “User ID” argumentin all calls triggeredby userin-
teractionwith thesystem,to satisfyanauthenticationrequirement.After thearchitec-

1The story is much the sameif the processis not actually top-down, but, given the productsof the
process,it canbe“rationally reconstructed”astop-down. This characterizesa greatdealof developmentin
thedefenseandaerospaceindustries,which is governedby contractualtraceabilityrequirements.

2



Requirements
Specification

Architectural
Design

Functional
Design

Coding

Integration

Deployment
and

Maintenance

Architecture
Dependability
Assessment

Function
Dependability
Assessment

Code
Dependability
Assessment

System
Dependability
Assessment

Dependability
Maintenance
Assessment

Development
for Functionality

Dependability
Assessment

Figure1: Top-Down DependabilityCo-Design

turaldescriptionis completed,it is reviewedby thedependabilityassessmentteam,and
feedbackisprovidedto thedevelopmentteambeforethesystemdesignis furtherelabo-
rated.Feedbackmight includeadvicethatanargumentin acall acrossmachinebound-
ariesbe encrypted,to satisfya confidentialityrequirement.As a result,architectural
designdecisionsthat would have a negative impacton dependabilitycanbe avoided
or immediatelycorrected,reducingthe likelihoodthat the architecturewill make de-
pendabilityrequirementsunsatisfiable.Next, a functionaldescriptionthat elaborates
thearchitecturaldescriptionis developed,basedon guidanceprovidedby thedepend-
ability assessmentteam. That guidanceis in turn basedupondependabilityanalysis
of possibleelaborationsof thearchitecture.Oncea tentative functionaldescriptionis
completed,the dependabilityimpactsof the designdecisionsit is baseduponarere-
viewed. This combinationof proactive andreactive adviceto the developmentteam
continuesuntil thesystemis deliveredto thecustomer(andevenafter, duringmainte-
nance).

The generalizationof this styleof interactionbetweenthe developersandthe de-
pendabilityassessorsto otherdevelopmentparadigmsis straightforward. A stagein
thedevelopmentconsistsof makingdesigndecisionsthatareembodiedin thefurther
elaborationof somesystemartifact (e.g., systemsourcecode).2 That elaborationis
guided,in part,by advicefrom thedependabilityassessmentteam,who haveanalyzed
all pre-existing artifactsandknows whatmistakesaremostlikely to be introducedin
thenext stage.After theelaborationhasbeententatively completed,theimpacton de-

2A division into stagesis not really essential,sincetheemphasisis on moreor lesscontinualinteraction
betweenthetwo teams,but it simplifiestheexplanation.

3



pendabilityotherdesigndecisionsis analyzed,modificationsaresuggested,andadvice
regardingthenext stageis produced.

3 Technology Insertion

Oneof themainadvantagesof this approachto ensuringdependabilityis that it does
not requireadoptionof a new developmentmethodology. Moreover, it canbeadopted
incrementally. Thesizeof thedependabilityassessmentteamandthefrequency of in-
teractionbetweenthatteamandthedevelopmentteamcanbeadjustedaccordingto the
stringency of thedependabilityrequirementsfor thesystem.Initially, anorganization
might employ a singledependability“guru” to assessthedependabilityof completed
designsor prototypes,anentirelyreactiveapproachthatwould havecomparatively lit-
tle impactonthedevelopmenteffort. This limited experimentcouldestablishthevalue
of independentdependabilityreviews, andpoint out concreteinstancesof errorsthat
couldhavebeenavoidedby morefrequent,proactiveanalyses.

Dependabilityassessmentrequiresdifferentskills, differenttools, anda different
mindsetthandevelopment.Oneof thelessonsthatthemodernmethodologiststeachis
thatprogrammersaremostproductivewhenthey useagenerate-and-testmethodology:
write somecode,thentestit anddebugit until it seemsto work. Dependabilityrequires
thatcertaineventsmustneveroccur, underany circumstances.Testingis fundamentally
ill-suited to establishingdependabilityin complex systems.More formal methods—
suchasmodelchecking[5] andtheoremproving[4] — areneeded,togetherwith plenty
of experienceandcommonsense.

Insteadof attemptingto make every developeran expert in dependabilityassess-
ment,securityco-designsuggeststhata dependabilityoraclebeprovidedfor develop-
ersto consult.In sodoing,dependabilityco-designbuild on thetraditionof having an
independenttestteamevaluatethefinishedprogram.Theprincipaldifferencesarethat
thisindependentevaluationis extendedto everystagein thedevelopmentlifecycle,and
thatanattemptis madeto avoid introducingerrors,aswell asdiscoveringerrorsthat
havealreadybeenmade.

References

[1] W. W. Agresti,New Paradigmsfor Software Development, IEEEComputerSocietyPress,
OrderNo. 707,1986.

[2] K. Beck,eXtremeProgrammingeXplained:EmbraceChange, AddisonWesley, 1999.

[3] B. Boehm,“A spiralmodelof softwaredevelopmentandenhancement”,IEEE Computer,
vol. 21,no.5, May 1988,pp.61–72.

[4] J.Crow, S.Owre,J.Rushby, N. Shankar, andM. Shrivas,“A tutorial introductionto PVS”,
Workshopon IndustrialStrengthFormalSpecificationTechniques, BocaRaton,FL, April,
1995.

[5] G. J.Holtzman,“The modelchecker Spin”, IEEE Transactionson Software Engineering,
vol. 23,no.5, May 1997,pp.279–295.

4


